

Web Technologies Unit-II

CSE -1-

UNIT-II

JAVASCRIPT AND JQUERY

INTRODUCTION:
JavaScript is the most popular scripting language on the internet, and works in all major

browsers, such as Internet Explorer, Fire fox, Chrome, Opera, and Safari.

What is JavaScript?

 JavaScript was designed to add interactivity to HTML pages

 JavaScript is a scripting language

 A scripting language is a lightweight programming language

 JavaScript is usually embedded directly into HTML pages

 JavaScript is an interpreted language (means that scripts execute without preliminary

compilation)

 Everyone can use JavaScript without purchasing a license

What can a JavaScript do?

 JavaScript gives HTML designers a programming tool - HTML authors are normally

not programmers, but JavaScript is a scripting language with a very simple syntax!

Almost anyone can put small "snippets" of code into their HTML pages

 JavaScript can put dynamic text into an HTML page - A JavaScript statement like

this: document.write("<h1>" + name + "</h1>") can write a variable text into an HTML

page

 JavaScript can react to events - A JavaScript can be set to execute when something

happens, like when a page has finished loading or when a user clicks on an HTML

element

 JavaScript can read and write HTML elements - A JavaScript can read and change the

content of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate form

data before it is submitted to a server. This saves the server from extra processing

 JavaScript can be used to detect the visitor's browser - A JavaScript can be used to

detect the visitor's browser, and - depending on the browser - load another page

specifically designed for that browser

 JavaScript can be used to create cookies - A JavaScript can be used to store and

retrieve information on the visitor's computer

JavaScript is Case Sensitive:

A function named "myfunction" is not the same as "myFunction" and a variable named

"myVar" is not the same as "myvar". JavaScript is case sensitive - therefore watch your

capitalization closely when you create or call variables, objects and functions.

WHITE SPACE

JavaScript ignores extra spaces. You can add white space to your script to make it more

readable. The following lines are equivalent:
name="Hege";

name = "Hege";

Web Technologies Unit-II

CSE -2-

OPERATORS USED IN JAVASCRIPT:

1) JAVASCRIPT ARITHMETIC OPERATORS

Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division remainder) x=y%2 x=1

++ Increment x=y++ x=6

-- Decrement x=y++ x=4

2) JAVASCRIPT ASSIGNMENT OPERATORS:

Assignment operators are used to assign values to JavaScript variables. Given that

x=10 and y=5, the table below explains the assignment operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The + Operator Used on Strings:

To add two or more string variables together, use the + operator.

txt1="What a very";

txt2="nice day"; txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice

day".

To add a space between the two strings, insert a space into one of the strings:

txt1="What a very ";

txt2="nice day";

txt3=txt1+txt2;

or insert a space into the expression:

txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

 The rule is: If you add a number and a string, the result will be a string!

Web Technologies Unit-II

CSE -3-

3) COMPARISON OPERATORS:

Comparison operators are used in logical statements to determine equality or

difference between variables or values. Given that x=5, the table below explains the

comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and type) x===5 is true

x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

4) LOGICAL OPERATORS:

Logical operators are used to determine the logic between variables or values. Given

that x=6 and y=3.

Operator Description Example

&& And (x < 10 && y > 1) is true

|| Or (x==5 || y==5) is false

! not !(x==y) is true

5) CONDITIONAL OPERATORS:

JavaScript also contains a conditional operator that assigns a value to a variable based

on some condition.

Syntax:

variablename=(condition)?value1:value2

Example:

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned

the value "Dear President" else it will be assigned "Dear".

Web Technologies Unit-II

CSE -4-

CONDITIONAL STATEMENTS

Very often when you write code, you want to perform different actions for different

decisions. You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

i) if statement - use this statement to execute some code only if a specified condition is true

ii) if...else statement - use this statement to execute some code if the condition is true and

another code if the condition is false

iii) if...else if....else statement - use this statement to select one of many blocks of code to be

executed

iv) switch statement - use this statement to select one of many blocks of code to be executed

i) IF STATEMENT

Syntax:

if (condition)

 {

 code to be executed if condition is true

 }

Example:

<script type="text/javascript">

//Write a "Good morning" greeting if
//the time is less than 10

var d=new Date();

var time=d.getHours();

if (time<10)

 {

 document.write("Good morning");

 }

</script>

ii) IF...ELSE STATEMENT

Use the If...else statement to execute some code if a condition is true and another

code if the condition is not true.

Syntax:

if (condition)

 {

 code to be executed if condition is true

 }

else

 {

 code to be executed if condition is not true

 }

Web Technologies Unit-II

CSE -5-

Example:

<script type="text/javascript">

//If the time is less than 10, you will get a "Good morning" greeting.

//Otherwise you will get a "Good day" greeting.

var d = new Date();

var time = d.getHours();

if (time < 10)

 {

 document.write("Good morning!");

 }

else

 {

 document.write("Good day!");

 }

</script>

iii) IF...ELSE IF...ELSE STATEMENT:

Syntax:

if (condition1)

 {

 code to be executed if condition1 is true

 }

else if (condition2)

 {

 code to be executed if condition2 is true

 }

else

 {

 code to be executed if condition1 and condition2 are not true

 }

Example:

<script type="text/javascript">

var d = new Date()

var time = d.getHours()

if (time<10)

 document.write("Good morning");

else if (time>10 && time<16)

 document.write("Good day");

else

 document.write("Hello World!");

</script>

Web Technologies Unit-II

CSE -6-

iv) SWITCH STATEMENT:

Syntax:

switch(n)

{

case 1: execute code block 1; break;

case 2: execute code block 2; break;

default:

 code to be executed if n is different from case 1 and 2

}

Example:

<script type="text/javascript">

//You will receive a different greeting based

//on what day it is. Note that Sunday=0,

//Monday=1, Tuesday=2, etc.

var d=new Date();

theDay=d.getDay();

switch (theDay)

{

case 5: document.write("Finally Friday");

 break;

case 6: document.write("Super Saturday");

 break;

case 0: document.write("Sleepy Sunday");

 break;

default: document.write("I'm looking forward to this weekend!");

}

</script>

Web Technologies Unit-II

CSE -7-

JAVASCRIPT POPUP BOXES:

JavaScript has three kinds of popup boxes:

i) Alert Box

ii) Confirm Box or Message Box, and

iii) Prompt Box.

i) ALERT BOX:

An alert box is often used if you want to make sure information comes through to

the user. When an alert box pops up, the user will have to click "OK" to proceed.

Syntax:

alert("sometext");

Example:
<html>

<head>

<script type="text/javascript">

function show_alert()

{

alert("You are Clicked Me ");

}

</script>

</head>

<body>

<input type="button" onClick="show_alert()" value="Click Me " />

</body>

</html>

ii) CONFIRM BOX OR MESSAGE BOX:

A confirm box is often used if you want the user to verify or accept something.

The user will have to click either "OK" or "Cancel" to proceed. If the user clicks "OK",

the box returns true. If the user clicks "Cancel", the box returns false.

Syntax:

confirm("sometext");

Example:

<html>

<head>

<script type="text/javascript">

function show_confirm()

{

var r=confirm("Press a button");

if (r==true)

Web Technologies Unit-II

CSE -8-

 {

 alert("You pressed OK!");

 }

else

 {

 alert("You pressed Cancel!");

 }

}

</script>

</head>

<body>

<input type="submit" onClick="show_confirm()" value="Clicked Me " />

</body>

</html>

iii) PROMPT BOX

A prompt box is often used if you want the user to input a value before entering a

page. When a prompt box pops up, the user will have to click either "OK" or "Cancel" to

proceed after entering an input value. If the user clicks "OK" the box returns the input

value. If the user clicks "Cancel" the box returns null.

Syntax:

prompt("sometext","defaultvalue");

Example:

<html>

<head>

<script type="text/javascript">

function show_prompt()

{

var name=prompt("Please enter your name","Harry Potter");

if (name!=null && name!="")

 {

 document.write("Hello " + name + "! How are you today?");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_prompt()" value="Show prompt box" />

</body>

</html>

Web Technologies Unit-II

CSE -9-

JAVASCRIPT FUNCTIONS

To keep the browser from executing a script when the page loads, you can put your script

into a function. A function contains code that will be executed by an event or by a call to the

function. You may call a function from anywhere within a page (or even from other pages if the

function is embedded in an external .js file). Functions can be defined both in the <head> and in

the <body> section of a document. However, to assure that a function is read/loaded by the

browser before it is called, it could be wise to put functions in the <head> section.

How to Define a Function

Syntax:

function function-name(var1,var2,...,varX)

{

some code;

}

The parameters var1, var2, etc. are variables or values passed into the function. The { and

the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function name.

Note: Do not forget about the importance of capitals in JavaScript! The word function must be

written in lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a

function with the exact same capitals as in the function name.

Example:

<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me" onClick="displaymessage()" />

</form>

</body>

</html>

If the line: alert("Hello world!!") in the example above had not been put within a

function, it would have been executed as soon as the page was loaded. Now, the script is not

executed before a user hits the input button. The function displaymessage() will be executed if

the input button is clicked.

Web Technologies Unit-II

CSE -10-

THE RETURN STATEMENT:

The return statement is used to specify the value that is returned from the function. So,

functions that are going to return a value must use the return statement. The example below

returns the product of two numbers (a and b):

Example:

<html>

<head>

<script type="text/javascript">

function product(a,b)

{

return a*b;

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(product(4,3));

</script>

</body>

</html>

THE LIFETIME OF JAVASCRIPT VARIABLES:

If you declare a variable within a function, the variable can only be accessed within that

function. When you exit the function, the variable is destroyed. These variables are called local

variables. You can have local variables with the same name in different functions, because each

is recognized only by the function in which it is declared. If you declare a variable outside a

function, all the functions on your page can access it. The lifetime of these variables starts when

they are declared, and ends when the page is closed.

JAVASCRIPT LOOPS

Often when you write code, you want the same block of code to run over and over again

in a row. Instead of adding several almost equal lines in a script we can use loops to perform a

task like this. In JavaScript, there are two different kinds of loops:

i) for - loops through a block of code a specified number of times

ii) while - loops through a block of code while a specified condition is true

i) FOR LOOP

Syntax:

for (var=startvalue;var<=endvalue;var=var+increment)

{

code to be executed

}

Web Technologies Unit-II

CSE -11-

Example:

The example below defines a loop that starts with i=0. The loop will continue to

run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any

comparing statement.

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=5;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

ii) WHILE LOOP

The while loop loops through a block of code while a specified condition is true.

Syntax:

while (var<=endvalue)

 {

 code to be executed

 }

Note: The <= could be any comparing operator.

Example:

The example below defines a loop that starts with i=0. The loop will continue to

run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs:

<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=5)

 {

 document.write("The number is " + i);

 document.write("
");

 i++;

 }

</script> </body></html>

Web Technologies Unit-II

CSE -12-

iii) DO...WHILE LOOP

The do...while loop is a variant of the while loop. This loop will execute the block

of code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax:

do

{

 code to be executed

 } while (var<=endvalue);

Example:

The example below uses a do...while loop. The do...while loop will always be

executed at least once, even if the condition is false, because the statements are executed

before the condition is tested:

<html>

<body>

<script type="text/javascript">

var i=0;

do

 {

 document.write("The number is " + i);

 document.write("
");

 i++;

 }

while (i<=5);

</script>

</body>

</html>

iv) THE BREAK STATEMENT

The break statement will break the loop and continue executing the code that

follows after the loop (if any).

Example:

<html>

<body> <script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

 {

 if (i==3)

 break;

 document.write("The number is " + i);

 document.write("
");

 }

</script>

</body></html>

Web Technologies Unit-II

CSE -13-

v) THE CONTINUE STATEMENT

The continue statement will break the current loop and continue with the next value.

Example:

<html>

<body>

<script type="text/javascript">

var i=0

for (i=0;i<=10;i++)

 {

 if (i==3)

 {

 continue;

 }

 document.write("The number is " + i);

 document.write("
");

 }

</script>

</body>

</html>
vi) JAVASCRIPT FOR...IN STATEMENT

The for...in statement loops through the elements of an array or through the

properties of an object.

Syntax:

for (variable in object)

 {

 code to be executed

 }

Note: The code in the body of the for...in loop is executed once for each

element/property.

Note: The variable argument can be a named variable, an array element, or a property of

an object.

Example:

Use the for...in statement to loop through an array:

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

Web Technologies Unit-II

CSE -14-

for (x in mycars)

 {

 document.write(mycars[x] + "
");

 }

</script>

</body>

</html>

JAVASCRIPT EVENTS:

By using JavaScript, we have the ability to create dynamic web pages. Events are actions

that can be detected by JavaScript. Every element on a web page has certain events which can

trigger a JavaScript. For example, we can use the onClick event of a button element to indicate

that a function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

 A mouse click

 A web page or an image loading

 Mousing over a hot spot on the web page

 Selecting an input field in an HTML form

 Submitting an HTML form

 A keystroke

Note: Events are normally used in combination with functions, and the function will not be

executed before the event occurs!

ONLOAD AND ONUNLOAD:

The onLoad and onUnload events are triggered when the user enters or leaves the page.

The onLoad event is often used to check the visitor's browser type and browser version, and load

the proper version of the web page based on the information. Both the onLoad and onUnload

events are also often used to deal with cookies that should be set when a user enters or leaves a

page. For example, you could have a popup asking for the user's name upon his first arrival to

your page. The name is then stored in a cookie. Next time the visitor arrives at your page, you

could have another popup saying something like: "Welcome John Doe!".

ONFOCUS, ONBLUR AND ONCHANGE:

The onFocus, onBlur and onChange events are often used in combination with validation

of form fields. Below is an example of how to use the onChange event. The checkEmail()

function will be called whenever the user changes the content of the field:

<input type="text" size="30" id="email" onChange="checkEmail()">

ONSUBMIT:

The onSubmit event is used to validate ALL form fields before submitting it. Below is an

example of how to use the onSubmit event. The checkForm() function will be called when the

user clicks the submit button in the form. If the field values are not accepted, the submit should

Web Technologies Unit-II

CSE -15-

be cancelled. The function checkForm() returns either true or false. If it returns true the form will

be submitted, otherwise the submit will be cancelled:

<form method="post" action="xxx.htm" onsubmit="return checkForm()">

ONMOUSEOVER AND ONMOUSEOUT:

onMouseOver and onMouseOut are often used to create "animated" buttons. Below is an

example of an onMouseOver event. An alert box appears when an onMouseOver event is

detected:

<a href="http://www.w3schools.com" onmouseover="alert('An onMouseOver event');return

false">

JAVASCRIPT TRY...CATCH STATEMENT

The try...catch statement allows you to test a block of code for errors. The try block

contains the code to be run, and the catch block contains the code to be executed if an error

occurs.

Syntax:

try

 {

 //Run some code here

 }

catch(err)

 {

 //Handle errors here

 }

Note that try...catch is written in lowercase letters. Using uppercase letters will generate a

JavaScript error!

Examples:

The example below is supposed to alert "Welcome guest!" when the button is clicked.

However, there's a typo in the message() function. alert() is misspelled as adddlert(). A

JavaScript error occurs. The catch block catches the error and executes a custom code to handle

it. The code displays a custom error message informing the user what happened:

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

try

 {

 adddlert("Welcome guest!");

 }

Web Technologies Unit-II

CSE -16-

catch(err)

 {

 txt="There was an error on this page.\n\n";

 txt+="Error description: " + err.description + "\n\n";

 txt+="Click OK to continue.\n\n";

 alert(txt);

 }

}

</script>

</head>

<body>

<input type="button" value="View message" onclick="message()" />

</body>

</html>

The next example uses a confirm box to display a custom message telling users they can

click OK to continue viewing the page or click Cancel to go to the homepage. If the confirm

method returns false, the user clicked Cancel, and the code redirects the user. If the confirm

method returns true, the code does nothing:

Example:

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

try {

 adddlert("Welcome guest!");

 }

catch(err) {

 txt="There was an error on this page.\n\n";

 txt+="Click OK to continue viewing this page,\n";

 txt+="or Cancel to return to the home page.\n\n";

 if(!confirm(txt))

 {

 document.location.href="http://www.w3schools.com/";

 }

}

}

</script>

</head>

<body>

<input type="button" value="View message" onclick="message()" />

</body>

</html>

Web Technologies Unit-II

CSE -17-

THE THROW STATEMENT

The throw statement allows you to create an exception. If you use this statement together

with the try...catch statement, you can control program flow and generate accurate error

messages.

Syntax

Throw(exception)

The exception can be a string, integer, Boolean or an object. Note that throw is written in

lowercase letters. Using uppercase letters will generate a JavaScript error!

Example:

The example below determines the value of a variable called x. If the value of x is higher

than 10, lower than 0, or not a number, we are going to throw an error. The error is then caught

by the catch argument and the proper error message is displayed:

<html>

<body>

<script type="text/javascript">

var x=prompt("Enter a number between 0 and 10:","");

try

 {

 if(x>10)

 {

 throw "Err1";

 }

 else if(x<0)

 {

 throw "Err2";

 }

 else if(isNaN(x))

 {

 throw "Err3"; } }

catch(er)

 {

 if(er=="Err1")

 {

 alert("Error! The value is too high");

 }

 if(er=="Err2")

 {

 alert("Error! The value is too low");

 }

 if(er=="Err3")

 {

 alert("Error! The value is not a number");

Web Technologies Unit-II

CSE -18-

 }

 }

</script>

</body>

</html>

JAVASCRIPT SPECIAL CHARACTERS

The backslash (\) is used to insert apostrophes, new lines, quotes, and other special

characters into a text string.

Look at the following JavaScript code:

var txt="We are the so-called "Vikings" from the north.";

document.write(txt);

 In JavaScript, a string is started and stopped with either single or double quotes. This

means that the string above will be chopped to: We are the so-called

To solve this problem, you must place a backslash (\) before each double quote in

"Viking". This turns each double quote into a string literal:

var txt="We are the so-called \"Vikings\" from the north.";

document.write(txt);

JavaScript will now output the proper text string: We are the so-called "Vikings" from the

north. Here is another example:

document.write ("You \& I are singing!");

The example above will produce the following output:

You & I are singing!

The table below lists other special characters that can be added to a text string with the

backslash sign:

Code Outputs

\' single quote

\" double quote

\& ampersand

\\ backslash

\n new line

\r carriage return

\t Tab

\b backspace

\f form feed

Web Technologies Unit-II

CSE -19-

JAVASCRIPT OBJECTS INTRODUCTION:

JavaScript is an Object Oriented Programming (OOP) language. An OOP language

allows you to define your own objects and make your own variable types.

OBJECT ORIENTED PROGRAMMING:

JavaScript is an Object Oriented Programming (OOP) language. An OOP language

allows you to define your own objects and make your own variable types. However, creating

your own objects will be explained later, in the Advanced JavaScript section. We will start by

looking at the built-in JavaScript objects, and how they are used. The next pages will explain

each built-in JavaScript object in detail. Note that an object is just a special kind of data. An

object has properties and methods.

Properties:

Properties are the values associated with an object. In the following example we are using

the length property of the String object to return the number of characters in a string:

<script type="text/javascript">

var txt="Hello World!";

document.write(txt.length);

</script>

The output of the code above will be: 12

Methods:

Methods are the actions that can be performed on objects. In the following example we

are using the toUpperCase() method of the String object to display a text in uppercase letters:
<script type="text/javascript">

var str="Hello world!";

document.write(str.toUpperCase());

</script>

The output of the code above will be:
HELLO WORLD!

STRING OBJECT:

The String object is used to manipulate a stored piece of text.

Examples of use:

The following example uses the length property of the String object to find the length of a string:

var txt="Hello world!";

document.write(txt.length);

Web Technologies Unit-II

CSE -20-

The code above will result in the following output: 12

The following example uses the toUpperCase() method of the String object to convert a

string to uppercase letters:

var txt="Hello world!";

document.write(txt.toUpperCase());

The code above will result in the following output: HELLO WORLD!

String Object Examples:

1. Return The Length of A String

<html>

<body>

<script type="text/javascript">

var txt = "Hello World!";

document.write(txt.length);

</script>

</body>

</html>

Output: 12

2. Style Strings

<html>

<body>

<script type="text/javascript">

var txt = "Hello World!";

document.write("<p>Big: " + txt.big() + "</p>");

document.write("<p>Small: " + txt.small() + "</p>");

document.write("<p>Bold: " + txt.bold() + "</p>");

document.write("<p>Italic: " + txt.italics() + "</p>");

document.write("<p>Fixed: " + txt.fixed() + "</p>");

document.write("<p>Strike: " + txt.strike() + "</p>");
document.write("<p>Fontcolor: " + txt.fontcolor("green") + "</p>");

document.write("<p>Fontsize: " + txt.fontsize(6) + "</p>");

document.write("<p>Subscript: " + txt.sub() + "</p>");

document.write("<p>Superscript: " + txt.sup() + "</p>");

document.write("<p>Link: " + txt.link("http://www.w3schools.com") + "</p>");

document.write("<p>Blink: " + txt.blink() + " (does not work in IE, Chrome, or

Safari)</p>");

</script>

</body>

</html>

Output:

Big: Hello World!

Small: Hello World!

Bold: Hello World!

Web Technologies Unit-II

CSE -21-

Italic: Hello World!

Fixed: Hello World!

Strike: Hello World!

Fontcolor: Hello World!

Fontsize: Hello World!

Subscript: Hello World!

Superscript:
Hello World!

Link: Hello World!

Blink: Hello World! (does not work in IE, Chrome, or Safari)

3. Return the Position of the First Occurrence of A Text in A String - indexof():

<html>

<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.indexOf("d") + "
");

document.write(str.indexOf("WORLD") + "
");

document.write(str.indexOf("world"));

</script>

</body>

</html>

Output: 10 -1 6

4. Search for A Text in A String and Return the Text If Found - Match():

<html>

<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.match("world") + "
");

document.write(str.match("World") + "
");

document.write(str.match("worlld") + "
");

document.write(str.match("world!"));

</script>

</body>

</html>

Output: world null null world!

5. Replace Characters in A String - Replace() :

<html>

<body>

<script type="text/javascript">

var str="Visit Microsoft!";

document.write(str.replace("Microsoft","W3Schools"));

http://www.w3schools.com/

Web Technologies Unit-II

CSE -22-

</script>

</body>

</html>

Output: Visit W3Schools!

6. Convert a String to Lowercase Letters:

<html>

<body>

<script type="text/javascript">

var str="Hello World!";

document.write(str.toLowerCase());

</script>

 </body>

</html>

Output: hello world!

JAVASCRIPT DATE OBJECT

The Date object is used to work with dates and times.

 Create a Date Object

The Date object is used to work with dates and times. Date objects are created with the

Date() constructor. There are four ways of instantiating a date:

New Date() // current date and time

new Date(milliseconds) //milliseconds since 1970/01/01

new Date(dateString)

new Date(year, month, day, hours, minutes, seconds, milliseconds)

Most parameters above are optional. Not specifying causes 0 to be passed in. Once a Date

object is created, a number of methods allow you to operate on it. Most methods allow you to get

and set the year, month, day, hour, minute, second, and milliseconds of the object, using either

local time or UTC (universal, or GMT) time. All dates are calculated in milliseconds from 01

January, 1970 00:00:00 Universal Time (UTC) with a day containing 86,400,000 milliseconds.

Some examples of instantiating a date:

today = new Date()

d1 = new Date("October 13, 1975 11:13:00")

d2 = new Date(79,5,24)

d3 = new Date(79,5,24,11,33,0)

 Set Dates

We can easily manipulate the date by using the methods available for the Date object. In

the example below we set a Date object to a specific date (14th January 2010):

Web Technologies Unit-II

CSE -23-

var myDate=new Date();

myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the future:

var myDate=new Date();

myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes are handled

automatically by the Date object itself!

 Compare Two Dates

The Date object is also used to compare two dates. The following example compares today's date

with the 14th January 2010:

var myDate=new Date();

myDate.setFullYear(2010,0,14);

var today = new Date();

if (myDate>today)

 {

 alert("Today is before 14th January 2010");

 }

else

 {

 alert("Today is after 14th January 2010");

 }

DATE OBJECT EXAMPLES:
1. Use Date() to Return Today's Date And Time

<html>

<body>

<script type="text/javascript">

var d=new Date();

document.write(d);

</script>

</body>

</html>

Output: Wed Jan 12 2011 14:38:08 GMT+0530 (India Standard Time)

2. Use getTime() to Calculate the Years Since 1970
<html>

<body>

<script type="text/javascript">

var d=new Date();

document.write(d.getTime() + " milliseconds since 1970/01/01");

</script>

Web Technologies Unit-II

CSE -24-

</body>

</html>

Output: 1294823298285 milliseconds since 1970/01/01

3. Use setFullYear() to Set a Specific Date
<html>

<body>

<script type="text/javascript">

var d = new Date();

d.setFullYear(1992,10,3);

document.write(d);

</script>

</body>

</html>

Output: Tue Nov 03 1992 14:40:15 GMT+0530 (India Standard Time)

4. Use toUTCString() to Convert Today's Date (according to UTC) to A String
<html>

<body>

<script type="text/javascript">

var d=new Date();

document.write("Original form: ");

document.write(d + "
");

document.write("To string (universal time): ");

document.write(d.toUTCString());

</script>

</body>

</html>

Output:
Original form: Wed Jan 12 2011 14:38:17 GMT+0530 (India Standard

Time)

To string (universal time): Wed, 12 Jan 2011 09:08:17 GMT

5. Use getDay() and An Array to Write a Weekday, and Not Just A Number

<html>

<body>

<script type="text/javascript">

var d=new Date();

var weekday=new Array(7);

weekday[0]="Sunday";

weekday[1]="Monday";

weekday[2]="Tuesday";

weekday[3]="Wednesday";

weekday[4]="Thursday";

weekday[5]="Friday";

Web Technologies Unit-II

CSE -25-

weekday[6]="Saturday";

document.write("Today is " + weekday[d.getDay()]);

</script>

</body>

</html>

Output: Today is Wednesday

6. Display a Clock

<html>

<head>

<script type="text/javascript">

function startTime()

{

var today=new Date();

var h=today.getHours();

var m=today.getMinutes();

var s=today.getSeconds();

// add a zero in front of numbers<10

m=checkTime(m);

s=checkTime(s);

document.getElementById('txt').innerHTML=h+":"+m+":"+s;

t=setTimeout('startTime()',500);

}

function checkTime(i)

{

if (i<10)

 {

 i="0" + i;

 }

return i;

}

</script>

</head>

<body onload="startTime()">

<div id="txt"></div>

</body>

</html>

Output: 14:42:13

Web Technologies Unit-II

CSE -26-

JAVASCRIPT ARRAY OBJECT

The Array object is used to store multiple values in a single variable. An array is a special

variable, which can hold more than one value, at a time. If you have a list of items (a list of car

names, for example), storing the cars in single variables could look like this:

cars1="Saab";

cars2="Volvo";

cars3="BMW";

However, what if you want to loop through the cars and find a specific one? And what if

you had not 3 cars, but 300?

The best solution here is to use an array! An array can hold all your variable values under

a single name. And you can access the values by referring to the array name. Each element in the

array has its own ID so that it can be easily accessed.

 Create an Array

An array can be defined in three ways. The following code creates an Array object called

myCars:

1
st
 Method:

var myCars=new Array(); // regular array (add an optional integer

myCars[0]="Saab"; // argument to control array's size)

myCars[1]="Volvo";

myCars[2]="BMW";

2
nd

 Method:

var myCars=new Array("Saab","Volvo","BMW"); // condensed array

3
rd

 Method:

var myCars=["Saab","Volvo","BMW"]; // literal array

Note: If you specify numbers or true/false values inside the array then the variable type will be

Number or Boolean, instead of String.

 Access an Array

You can refer to a particular element in an array by referring to the name of the array and the

index number. The index number starts at 0. The following code line:

document.write(myCars[0]);

will result in the following output:

Saab

Web Technologies Unit-II

CSE -27-

 Modify Values in an Array

To modify a value in an existing array, just add a new value to the array with a specified index

number:

myCars[0]="Opel";

Now, the following code line:

document.write(myCars[0]);

will result in the following output: Opel

Array Object Examples:

1. Program for array concatenation

<html>

<body>

<script type="text/javascript">

var parents = ["Jani", "Tove"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(children);

document.write(family);

</script>

</body>

</html>

2. Program for array concatenation with multiple arrays.
<html>

<body>

<script type="text/javascript">

var parents = ["Jani", "Tove"];

var brothers = ["Stale", "Kai Jim", "Borge"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(brothers, children);

document.write(family);

</script>

</body>

 </html>

3. Program for array join operation.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.join() + "
");

document.write(fruits.join("+") + "
");

document.write(fruits.join(" and "));

</script>

</body> </html>

Web Technologies Unit-II

CSE -28-

4. Program for array pop.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.pop() + "
");

document.write(fruits + "
");

document.write(fruits.pop() + "
");

document.write(fruits);

</script>

</body>

 </html>

5. Program for array push.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.push("Kiwi") + "
");

document.write(fruits.push("Lemon","Pineapple") + "
");

document.write(fruits);

</script>

</body>

</html>

6. Program for array reverse.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.reverse());

</script>

</body>

</html>

7. Program for array shift.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.shift() + "
");

document.write(fruits + "
");

document.write(fruits.shift() + "
");

document.write(fruits);

</script>

</body>

</html>

Web Technologies Unit-II

CSE -29-

8. Program for array slice.
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.slice(0,1) + "
");

document.write(fruits.slice(1) + "
");

document.write(fruits.slice(-2) + "
");

document.write(fruits);

</script>

</body>

</html>

9. Program for array sort().
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.sort());

</script>

</body>

</html>

10. Program for array toString().
<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.toString());

</script>

</body>

</html>

JAVASCRIPT MATH OBJECT

The Math object allows you to perform mathematical tasks. The Math object includes

several mathematical constants and methods.

Syntax for using properties/methods of Math:

var pi_value=Math.PI;

var sqrt_value=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using Math

as an object without creating it.

Web Technologies Unit-II

CSE -30-

Mathematical Constants:

JavaScript provides eight mathematical constants that can be accessed from the Math

object. These are: E, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10,

base-2 log of E, and base-10 log of E. You may reference these constants from your JavaScript

like this:

Math.E

Math.PI

Math.SQRT2

Math.SQRT1_2

Math.LN2

Math.LN10

Math.LOG2E

Math.LOG10E

Mathematical Methods:

In addition to the mathematical constants that can be accessed from the Math object there

are also several methods available. The following example uses the round() method of the Math

object to round a number to the nearest integer:

document.write(Math.round(4.7));

Output: 5

The following example uses the random() method of the Math object to return a random

number between 0 and 1:

document.write(Math.random());

Output: 0.9306157949324372

The following example uses the floor() and random() methods of the Math object to

return a random number between 0 and 10:

document.write(Math.floor(Math.random()*11));

Output: 6

MATH OBJECT EXAMPLES

1. Use round() to Round a Number:

<html>

<body>

<script type="text/javascript">

document.write(Math.round(0.60) + "
");

document.write(Math.round(0.50) + "
");

document.write(Math.round(0.49) + "
");

document.write(Math.round(-4.40) + "
");

document.write(Math.round(-4.60));

</script>

</body>

Web Technologies Unit-II

CSE -31-

</html>

2. Use random() to Return a Random Number Between 0 and 1:

<html>

<body>

<script type="text/javascript">

//return a random number between 0 and 1

document.write(Math.random() + "
");

//return a random integer between 0 and 10

document.write(Math.floor(Math.random()*11));

</script>

</body>

</html>

3. Use max() to return the Number With the Highest Value of Two Specified Numbers:

<html>

<body>

<script type="text/javascript">

document.write(Math.max(5,10) + "
");

document.write(Math.max(0,150,30,20,38) + "
");

document.write(Math.max(-5,10) + "
");

document.write(Math.max(-5,-10) + "
");

document.write(Math.max(1.5,2.5));

</script>

</body>

</html>

4. Use min() to Return the Number With the Lowest Value of Two Specified Numbers:

<html>

<body>

<script type="text/javascript">

document.write(Math.min(5,10) + "
");

document.write(Math.min(0,150,30,20,38) + "
");

document.write(Math.min(-5,10) + "
");

document.write(Math.min(-5,-10) + "
");

document.write(Math.min(1.5,2.5));

</script>

</body>

</html>

5. Convert Celsius to Fahrenheit:

<html>

<head>

<script type="text/javascript">

function convert(degree)

Web Technologies Unit-II

CSE -32-

{

if (degree=="C")

 {

 F=document.getElementById("c").value * 9 / 5 + 32;

 document.getElementById("f").value=Math.round(F);

 }

else

 {

 C=(document.getElementById("f").value -32) * 5 / 9;

 document.getElementById("c").value=Math.round(C);

 }

}

</script>

</head>

<body>

<p></p>Insert a number into one of the input fields

below:</p>

<form>

<input id="c" name="c" onkeyup="convert('C')"> degrees

Celsius

equals

<input id="f" name="f" onkeyup="convert('F')"> degrees

Fahrenheit

</form>

<p>Note that the Math.round() method is used, so that the

result will be returned as an integer.</p>

</body>

</html>

JAVASCRIPT BOOLEAN OBJECT:

The Boolean object is used to convert a non-Boolean value to a Boolean value (true or false).

Boolean Object Methods

Method Description

toString() Converts a Boolean value to a string, and returns the result

valueOf() Returns the primitive value of a Boolean object

JAVASCRIPT WINDOW OBJECT:

The window object represents an open window in a browser.

Note: There is no public standard that applies to the Window object, but all major browsers

support it.

Web Technologies Unit-II

CSE -33-

Window Object Properties:

Property Description

closed Returns a Boolean value indicating whether a window has been closed or not

defaultStatus Sets or returns the default text in the statusbar of a window

document Returns the Document object for the window

frames Returns an array of all the frames (including iframes) in the current window

history Returns the History object for the window

innerHeight Sets or returns the the inner height of a window's content area

innerWidth Sets or returns the the inner width of a window's content area

length Returns the number of frames (including iframes) in a window

location Returns the Location object for the window

name Sets or returns the name of a window

navigator Returns the Navigator object for the window

opener Returns a reference to the window that created the window

outerHeight Sets or returns the outer height of a window, including toolbars/scrollbars

outerWidth Sets or returns the outer width of a window, including toolbars/scrollbars

pageXOffset
Returns the pixels the current document has been scrolled (horizontally) from

the upper left corner of the window

pageYOffset
Returns the pixels the current document has been scrolled (vertically) from

the upper left corner of the window

parent Returns the parent window of the current window

screen Returns the Screen object for the window

screenLeft Returns the x coordinate of the window relative to the screen

screenTop Returns the y coordinate of the window relative to the screen

screenX Returns the x coordinate of the window relative to the screen

screenY Returns the y coordinate of the window relative to the screen

self Returns the current window

status Sets the text in the statusbar of a window

top Returns the topmost browser window

Window Object Methods:

Method Description

alert() Displays an alert box with a message and an OK button

blur() Removes focus from the current window

close() Closes the current window

confirm() Displays a dialog box with a message and an OK and a Cancel button

createPopup() Creates a pop-up window

focus() Sets focus to the current window

open() Opens a new browser window

print() Prints the content of the current window

Web Technologies Unit-II

CSE -34-

prompt() Displays a dialog box that prompts the visitor for input

resizeBy() Resizes the window by the specified pixels

resizeTo() Resizes the window to the specified width and height

Window Object Examples

1. Display an alert box:

<html>

<head>

<script type="text/javascript">

function show_alert()

{

alert("Hello! I am an alert box!");

}

</script>

</head>

<body>

<input type="button" onclick="show_alert()" value="Show alert box" />

</body>

</html>

2. Display a prompt box:

<html>

<head>

<script type="text/javascript">

function show_prompt()

{

var name=prompt("Please enter your name","Harry Potter");

if (name!=null && name!="")

 {

 document.write("Hello " + name + "! How are you today?");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_prompt()" value="Show prompt

box" />

</body>

</html>

3. Display a confirm box, and alert what the visitor clicked:

<html>

<head>

Web Technologies Unit-II

CSE -35-

<script type="text/javascript">

function show_confirm()

{

var r=confirm("Press a button!");

if (r==true)

 {

 alert("You pressed OK!");

 }

else

 {

 alert("You pressed Cancel!");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_confirm()" value="Show a confirm

box" />

</body>

</html>

4. Create a pop-up window Open a new window when clicking on a button:

<html>

<head>

<script type="text/javascript">

function open_win()

{

window.open("http://kishor.ucoz.com");

}

</script>

</head>

<body>

<form>

<input type=button value="Open Window" onclick="open_win()">

</form>

</body>

</html>

5. Open a new window and control its appearance:

<html>

<head>

<script type="text/javascript">

function open_win()

{

Web Technologies Unit-II

CSE -36-

window.open("http://www.w3schools.com","_blank","toolbar=yes,

location=yes, directories=no, status=no, menubar=yes, scrollbars=yes,

resizable=no, copyhistory=yes, width=400, height=400");

}

</script>

</head>

<body>

<form>

<input type="button" value="Open Window" onclick="open_win()">

</form>

</body>

</html>

6. Open multiple new windows:

<html>

<head>

<script type="text/javascript">

function open_win()

{

window.open("http://www.microsoft.com/");

window.open("http://kishor.ucoz.com");

}

</script>

</head>

<body>

<form>

<input type=button value="Open Windows" onclick="open_win()">

</form>

</body>

</html>

7. Close the new window:

<html>

<head>

<script type="text/javascript">

function openWin()

{

myWindow=window.open("","","width=200,height=100");

myWindow.document.write("<p>This is 'myWindow'</p>");

}

function closeWin()

{

myWindow.close();

}

</script> </head>

<body>

Web Technologies Unit-II

CSE -37-

<input type="button" value="Open 'myWindow'" onclick="openWin()" />

<input type="button" value="Close 'myWindow'" onclick="closeWin()"/>

</body>

</html>

8. Print the current page:

<html>

<head>

<script type="text/javascript">

function printpage()

{

window.print();

}

</script>

</head>

<body>

<input type="button" value="Print this page" onclick="printpage()" />

</body>

</html>

9. A simple timing:

<html>

<head>

<script type="text/javascript">

function timeText()

{

var t1=setTimeout("document.getElementById('txt').value='2

seconds!'",2000);

var t2=setTimeout("document.getElementById('txt').value='4

seconds!'",4000);

var t3=setTimeout("document.getElementById('txt').value='6

seconds!'",6000);

}

</script>

</head>

<body>

<form>

<input type="button" value="Display timed text!" onclick="timeText()"/>

<input type="text" id="txt" />

</form>

<p>Click the button above. The input field will tell you when two, four,

and six seconds have passed…..</p>

</body>

</html>

Web Technologies Unit-II

CSE -38-

JQUERY INTRODUCTION:
jQuery is a fast and concise JavaScript Library created by John Resig in 2006 with a nice motto:

Write less, do more. jQuery simplifies HTML document traversing, event handling, animating,

and Ajax interactions for rapid web development. jQuery is a JavaScript toolkit designed to

simplify various tasks by writing less code. Here is the list of important core features supported

by jQuery:

 DOM manipulation: The jQuery made it easy to select DOM elements, negotiate them

and modifying their content by using cross-browser open source selector engine called

Sizzle.

 Event handling: The jQuery offers an elegant way to capture a wide variety of events,

such as a user clicking on a link, without the need to clutter the HTML code itself with

event handlers.

 AJAX Support: The jQuery helps you a lot to develop a responsive and feature-rich site

using AJAX technology.

 Animations: The jQuery comes with plenty of built-in animation effects which you can

use in your websites.

 Lightweight: The jQuery is very lightweight library - about 19KB in size (Minified and

gzipped).

 Cross Browser Support: The jQuery has cross-browser support, and works well in IE

6.0+, FF 2.0+, Safari 3.0+, Chrome and Opera 9.0+

 Latest Technology: The jQuery supports CSS3 selectors and basic XPath syntax.

Installation of jQuery:
There are two ways to use jQuery.

 Local Installation − You can download jQuery library on your local machine and

include it in your HTML code.

 CDN Based Version − You can include jQuery library into your HTML code directly

from Content Delivery Network (CDN).

Local Installation:

 Go to the https://jquery.com/download/ to download the latest version available.

 Now, insert downloaded jquery-2.1.3.min.js file in a directory of your website, e.g.

C:/your-website-directory/jquery/jquery-2.1.3.min.js.

Example:

Now, you can include jQuery library in your HTML file as follows:
<html>

<head>
<title>The jQuery Example</title>
<script type="text/javascript" src="/jquery/jquery-
2.1.3.min.js"></script>
<script type="text/javascript">
$(document).ready(function()

{

Web Technologies Unit-II

CSE -39-

document.write("Hello, World!");
});

</script>
</head>
<body>

<h1>Hello</h1>
</body>

</html>
This will produce the following result –

Hello, World!

CDN Based Version:

You can include jQuery library into your HTML code directly from Content Delivery Network

(CDN). Google and Microsoft provides content deliver for the latest version. We are using

Google CDN version of the library.

Example:

Now, you can include jQuery library in your HTML file as follows:
<html>

<head>
<title>The jQuery Example</title>
<script type="text/javascript" src=
"http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>
<script type="text/javascript">
$(document).ready(function({

document.write("Hello, World!");
});

</script>
</head>
<body>

<h1>Hello</h1>
</body>

</html>
This will produce the following result –

Hello, World!

Calling jQuery Library Functions:

If you want to an event work on your page, you should call it inside the $(document).ready()

function. Everything inside it will load as soon as the DOM is loaded and before the page

contents are loaded.

To do this, we register a ready event for the document as follows:

$(document).ready(function() {

//write the stuff when DOM is ready

});

To call upon any jQuery library function, use HTML script tags as shown below:

Web Technologies Unit-II

CSE -40-

<html>
<head>

<title>The jQuery Example</title>
<script type="text/javascript" src="/jquery/jquery
1.3.2.min.js"></script>
<script type="text/javascript" language="javascript">

$(document).ready(function({
$("div").click(function() {

Alert("Hello world!");
});

});
</script>

</head>
<body>

<div id="newdiv">
Click on this to see a dialogue box.

 </div>
 </body>
 </html>
Creating and Executing Custom Scripts:

It is better to write our custom code in custom JavaScript file: custom.js, as follows:

/* Filename: custom.js */
$(document).ready(function() {

$("div").click(function() {
alert("Hello world!");

});
});
Now we can include custom.js file in our HTML file as follows:

<html>
<head>
<title>The jQuery Example</title>
<script type="text/javascript" src="/jquery/jquery-

1.3.2.min.js"></script>
<script type="text/javascript" src="/jquery/custom.js"></script>
</head>
<body>
<div id="newdiv">
Click on this to see a dialogue box.
</div>
</body>

</html>
This will produce the following result:

Click on this to see a dialogue box.

Web Technologies Unit-II

CSE -41-

jQuery Selectors:
The jQuery library binds the power of Cascading Style Sheets (CSS) selectors to let us

quickly and easily access elements or groups of elements in the Document Object Model

(DOM).

A jQuery Selector is a function which makes use of expressions to find out matching

elements from a DOM based on the given criteria.

The $() Factory Function:

All type of selectors available in jQuery, always start with the dollar sign and

parentheses: $(). The factory function $() makes use of the following three building blocks while

selecting elements in a given document:

Selector Description
Tag Name Represents a tag name available in the DOM. For example $('p') selects all

paragraphs <p> in the document.

Tag ID Represents a tag available with the given ID in the DOM. For example

$('#some- id') selects the single element in the document that has an ID of

some-id.

Tag Class Represents a tag available with the given class in the DOM. For example

$('.some-class') selects all elements in the document that have a class of some-

class.

All the above items can be used either on their own or in combination with other selectors. All

the jQuery selectors are based on the same principle except some tweaking.

NOTE: The factory function $() is a synonym of jQuery() function. So in case you are using any

other JavaScript library where $ sign is conflicting with something else then you can replace $

sign by jQuery name and you can use function jQuery() instead of $().

Example:

Following is a simple example which makes use of Tag Selector. This would select all the

elements with a tag name p.

<html>

<head>

<title>the title</title>

<script type="text/javascript" src="/jquery/jquery-
1.3.2.min.js"></script>
<script type="text/javascript" language="javascript">
$(document).ready(function() {

var pars = $("p");
for(i=0; i<pars.length; i++){

alert("Found paragraph: " + pars[i].innerHTML);
}

});
</script>

</head>
<body>

Web Technologies Unit-II

CSE -42-

<div>
<p class="myclass">This is a paragraph.</p>
<p id="myid">This is second paragraph.</p>
<p>This is third paragraph.</p>

</div>
</body>

</html>
This will produce the the following result:

Using of Selectors:

The selectors are very useful and would be required at every step while using jQuery. They get

the exact element that you want from your HTML document.

Following table lists down few basic selectors and explains them with examples.

Selector Description
Name Selects all elements which match with the given element Name.

#ID Selects a single element which matches with the given ID.

.Class Selects all elements which matches with the given Class.

Universal (*) Selects all elements available in a DOM.

Multiple Elements

E, F,G

Selects the combined results of all the specified selectors E, F or G.

jQuery – Element Name Selector:

The element selector selects all the elements that have a tag name of T.

Syntax:

Here is the simple syntax to use this selector −
$('tagname')

Parameters:

Here is the description of all the parameters used by this selector –

 tagname − Any standard HTML tag name like div, p, em, img, li etc.

Returns:

Like any other jQuery selector, this selector also returns an array filled with the found elements.

Example:

 $('p') − Selects all elements with a tag name of p in the document.

 $('div') − Selects all elements with a tag name of div in the document.

Following example would select all the divisions and will apply yellow color to their background

Web Technologies Unit-II

CSE -43-

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquer
y.min.js">

</script>
<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select all the divisions */
$("div").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p> </div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p> </div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>
</body>

</html>
This will produce the following result:
This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

jQuery – Element ID Selector:

Description:

The element ID selector selects a single element with the given id attribute.

Syntax:

Here is the simple syntax to use this selector −

Parameters:

Here is the description of all the parameters used by this selector –

 Elementid: This would be an element ID. If the id contains any special characters like

periods or colons you have to escape those characters with backslashes.

Returns:

Like any other jQuery selector, this selector also returns an array filled with the found element.

Web Technologies Unit-II

CSE -44-

Example:

 $('#myid') − Selects a single element with the given id myid.

 $('div#yourid') − Selects a single division with the given id yourid.

Following example would select second division and will apply yellow color to its background

as below:

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"
>

</script>
<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select second division only*/
$("#div2").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>
<div class="medium" id="div2">

<p>This is second division of the DOM.</p>
 </div>
<div class="small" id="div3">

<p>This is third division of the DOM.</p>
 </div>
</body>

</html>
This will produce the following result:

This is first division of the DOM.
This is second division of the DOM.

This is third division of the DOM.

jQuery - Element Class Selector:

Description:

The element class selector selects all the elements which match with the given class of the

elements.

Syntax:

Here is the simple syntax to use this selector:

$('.classid')

Web Technologies Unit-II

CSE -45-

Parameters:

Here is the description of all the parameters used by this selector –

 classid − This is class ID available in the document.

Returns:

Like any other jQuery selector, this selector also returns an array filled with the found elements.

Example:

 $('.big') − Selects all the elements with the given class ID big.

 $('p.small') − Selects all the paragraphs with the given class ID small.

 $('.big.small') − Selects all the elements with a class of big and small.

Following example would select all divisions with class .big and will apply yellow color to its

background.

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"
>

</script>
<script type="text/javascript" language="javascript">

$(document).ready(function() {
/* This would select second division only*/
$(".big").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p> </div>

 <div class="medium" id="div2">
<p>This is second division of the DOM.</p> </div>

<div class="small" id="div3">
<p>This is third division of the DOM</p> </div>

</body>
</html>
This will produce the following result:

This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

jQuery - Universal Selector:

Description:

The universal selector selects all the elements available in the document.

Web Technologies Unit-II

CSE -46-

Syntax:

Here is the simple syntax to use this selector −
$('*')

Parameters:

Here is the description of all the parameters used by this selector

 * − A symbolic star.

Returns:

Like any other jQuery selector, this selector also returns an array filled with the found elements.

Example:

 $('*') selects all the elements available in the document.

Following example would select all the elements and will apply yellow color to their

background. Try to understand that this selector will select every element including head, body

etc.

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"
>

</script>
<script type="text/javascript" language="javascript">

$(document).ready(function() {
/* This would select all the elements */
$("*").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p> </div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p>

</div>
<div class="small" id="div3">

<p>This is third division of the DOM</p> </div>
</body>

</html>
This will produce the following result:
This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

Web Technologies Unit-II

CSE -47-

jQuery – Multiple Elements Selector:

Description:

This Multiple Elements selector selects the combined results of all the specified selectors E, F or G. You can specify

any number of selectors to combine into a single result. Here order of the DOM elements in the jQuery object aren't

necessarily identical.

Syntax:

Here is the simple syntax to use this selector −

$('E, F, G,....')

Parameters:

Here is the description of all the parameters used by this selector –

 E − Any valid selector

 F − Any valid selector

 G − Any valid selector

Returns:

Like any other jQuery selector, this selector also returns an array filled with the found elements.

Example:

 $('div, p') − selects all the elements matched by div or p.

 $('p strong, .myclass') − selects all elements matched by strong that are descendants of an

element matched by p as well as all elements that have a class of myclass.

 $('p strong, #myid') − selects a single element matched by strong that is descendant of an

element matched by p as well as element whose id is myid.

Following example would select elements with class ID big and element with ID div3 and will apply yellow

color to its background –

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"
>

</script>
<script type="text/javascript" language="javascript">

$(document).ready(function() {
$(".big, #div3").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p> </div>

 <div class="medium" id="div2">
<p>This is second division of the

DOM.</p> </div>

<div class="small" id="div3">
<p>This is third division of the DOM</p> </div>

Web Technologies Unit-II

CSE -48-

</body>
</html>

This will produce the following result:

This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

jQuery Selector Examples:

Syntax Description

$(this) Selects the current HTML element

$("p.intro") Selects all <p> elements with class="intro"

$("p:first") Selects the first <p> element

$("ul li:first") Selects the first element of the first

$("ul li:first-child") Selects the first element of every

$("[href]") Selects all elements with an href attribute

$("a[target='_blank']") Selects all <a> elements with a target attribute value equal to "_blank"

$("a[target!='_blank']")
Selects all <a> elements with a target attribute value NOT equal to

"_blank"

$(":button") Selects all <button> elements and <input> elements of type="button"

$("tr:even") Selects all even <tr> elements

$("tr:odd") Selects all odd <tr> elements

jQuery DOM:

JQuery provides methods to manipulate DOM in efficient way. You do not need to write big

code to modify the value of any element's attribute or to extract HTML code from a paragraph or

division.

JQuery provides methods such as .attr(), .html(), and .val() which act as getters, retrieving

information from DOM elements for later use.

Content Manipulation:

The html() method gets the html contents (innerHTML) of the first matched element.

Here is the syntax for the method −

selector.html()

Example:
<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src =

"https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

 </script>

Web Technologies Unit-II

CSE -49-

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 $("div").click(function () {

 var content = $(this).html();

 $("#result").text(content);

 });

 });

 </script>

 <style>

 #division{ margin:10px;padding:12px; border:2px solid #666;

width:60px;}

 </style>

 </head>

 <body>

 <p>Click on the square below:</p>

 <div id = "division" style = "background-color:blue;">

 This is Blue Square!!

 </div>

 </body>

</html>

text(val):

The text(val) method sets the combined text contents of all matched elements.

Syntax:
selector.text(val)

Example:
<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src =

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

 </script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 $("div").click(function () {

 $(this).text("<h1>Click another square</h1>");

 });

 });

 </script>

 <style>

 .div{ margin:10px;padding:12px; border:2px solid #666; width:60px;}

 </style>

 </head>

 <body>

 <p>Click on any square below to see the result:</p>

 <div class = "div" style = "background-color:blue;"></div>

Web Technologies Unit-II

CSE -50-

 <div class = "div" style = "background-color:green;"></div>

 <div class = "div" style = "background-color:red;"></div>

 </body>

</html>

jQuery Events:

jQuery is tailor-made to respond to events in an HTML page. All the different visitors' actions

that a web page can respond to are called events. An event represents the precise moment when

something happens.

Examples:

 moving a mouse over an element

 selecting a radio button

 clicking on an element

Here are some common DOM events:

Mouse Events Keyboard Events Form Events Document/Window Events

Click keypress submit load

dblclick keydown change resize

mouseenter keyup focus scroll

mouseleave blur unload

Syntax:

In jQuery, most DOM events have an equivalent jQuery method. To assign a click event to all

paragraphs on a page, you can do this:

$(selector).click();

Sometime you need to define what should happen when the event fires, then you must pass a

function to the event:

$(selector).click(function(){

 // action goes here!!

});

Commonly used jQuery Events:

$(document).ready():

The $(document).ready() method allows us to execute a function when the document is fully

loaded.

Example:

$(document).ready(function(){

 alert(“Hello World!”);

});

click():

The click() method attaches an event handler function to an HTML element. The function is

executed when the user clicks on the HTML element.

Web Technologies Unit-II

CSE -51-

Example:

$("p").click(function(){

 $(this).hide();

});

jQuery Attributes:

Some of the most basic components we can manipulate when it comes to DOM elements are the

properties and attributes assigned to those elements.

Most of these attributes are available through JavaScript as DOM node properties. Some of the

more common properties are −

 className

 tagName

 id

 href

 title

 rel

 src

Consider the following HTML markup for an image element –

<img id = "imageid" src = "image.gif" alt = "Image" class = "myclass" title = "This is an

image"/>

In this element's markup, the tag name is img, and the markup for id, src, alt, class, and title

represents the element's attributes, each of which consists of a name and a value. jQuery gives us

the means to easily manipulate an element's attributes and gives us access to the element so that

we can also change its properties.

Get Attribute Value:

The attr() method can be used to either fetch the value of an attribute from the first element in

the matched set or set attribute values onto all matched elements.

Example:
<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src =

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

 </script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 var title = $("em").attr("title");

 $("#divid").text(title);

 });

 </script>

 </head>

 <body>

 <div>

 <em title = "Bold and Brave">This is first paragraph.

 <p id = "myid">This is second paragraph.</p>

 <div id = "divid"></div>

 </div>

 </body>

</html>

Web Technologies Unit-II

CSE -52-

This will produce following result –

This is first paragraph.

This is second paragraph.

Bold and Brave

Set Attribute Value:

The attr(name, value) method can be used to set the named attribute onto all elements in the

wrapped set using the passed value.

Example:
<html>

 <head>

 <title>The jQuery Example</title>

 <base href="https://www.tutorialspoint.com" />

 <script type = "text/javascript"

 src =

"https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

 </script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 $("#myimg").attr("src", "/jquery/images/jquery.jpg");

 });

 </script>

 </head>

 <body>

 <div>

 </div>

 </body>

</html>

